Answer:
La presión neumática para levantar un automóvil de 17,640 newtons es 220,500 pascales.
Explanation:
Asumiendo que la presión (), medida en pascales, tiene una distribución uniforme sobre la superficie del pistón, se calcula a partir de la siguiente expresion:
Donde:
- Fuerza motriz, medida en newtons.
- Área del pistón, medida en metros cuadrados.
La fuerza motriz es equivalente al peso del automóvil. El área del pistón (), medido en metros cuadrados, es determinado por:
Donde es el diámetro del pistón, medido en metros.
Si y , entonces la presión neumática es:
La presión neumática para levantar un automóvil de 17,640 newtons es 220,500 pascales.
Answer:
B
Explanation:
The correct answer is B) have unlike charges. Since they are attracted to each other they have to be unlike
It is D, you can not replace minerals. This makes them valuable.
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
Density is given by:
D = M/V
D = density, M = mass, V = volume
Given values:
M = 3.7g, V = 4.6cm³
Plug in and solve for D:
D = 3.7/4.6
D = 0.80g/cm³