Answer:
The answer will be Ligand A with a dissociation constant (Kd) of
M
Explanation:
When the dissociation constant in the ligand is small (in order of nano) (
) it will be more tied. Due to a dissociation constant measures how much a ligand can be able to be separated from the protein so if the number is small it means that the ligand is highly binded to the protein.
On the other hand, the occupancy percentage of the ligand does not imply binding. Conversely, a High-affinity ligand binding with the proteins implies that a relatively low concentration of a ligand is adequate to occupy the maximum ligand-binding site.
Answer:

Explanation:
Hello!
In this case, given this is an acid-base neutralization and we are considering a diprotic acid, we can write the following mole-mole relationship:

It means that the moles of acid can be computed given the volume and concentration of NaOH:

It means that the approximate molar mass of the acid is:

Best regards!
<span>70.4 mg CO2 x 1.0 g /1000 mg x 1 mole CO2/ 44 gCO2 x 1 mole C/1 mole CO2 = 0.0016 moles C
14.4 mg H2O x 1.0 g/1000 mg x 1 mole H2O/18 g H2O x 2 moles H/ 1 mole H2O = 0.0016 moles O
molar mass of C=12 g/mole
molar mass of H=1 g/mole
0.0016 moles C x 12 g C/ 1 mole C = 0.0192 g C or 19.2 mg C
0.00156 moles H x 1 g H/1 mole H = 0.00156 g H or 1.56 mg H
mg O= 30.4 mg vanillin - 19.2 mg C – 1.56 mg H = 9.64 mg O
molar mass of O=16 g/mole
9.64 mg O x 1 g/1000 mg x 1 mole O/16.0 g = 0.000602
C.0016 H.0016 O.000602; divide all the moles by the smallest value of0.000602
C2.66H2.66O1 is the empirical formula;
to obtain whole numbers multiply by 3
3[C2.66H2.66O1] = C8H8O3
above formula weight: 8(C) + 8(H) + 3(O) = 8(12) + 8(1) + 3(16) = 152 amu
The empirical formula weight and the molecular formula weight are the same .
Molecular formula is C8H8O3.</span>