** Missing info: Lines per mm = 500 **
Ans: The wavelength is = λ = 1414.21 nm
Explanation:
The formula for diffraction grading is:
dsinθ = mλ --- (1)
Where
d = 1/lines-per-meter = (1/500)*10^-3 = 2 * 10^-6
m = order = 1
λ = wavelength
θ = 45°
Plug in the values in (1):
(1) => 2*10^-6*sin(45°) = (1)λ
=> λ = 1414.21 nm
I'm guessing that you mean like this:
-- The ruler is held with zero at the bottom, and the centimeter markings
increase as you go up the ruler.
-- You place your fingers with the ruler and the zero mark between them.
-- The number where you catch the ruler is the distance it has fallen.
Then, all we have to find is the time it takes for the ruler to fall 11.3 cm .
Here's the formula for the distance an object falls from rest
in a certain time:
Distance = (1/2) (gravity) (time)²
On Earth, the acceleration of gravity is 9.8 m/s².
So we can write ...
11.2 cm = (1/2) (9.8 m/s²) (time)²
or
0.112 meter = (4.9 m/s²) (time)²
Divide each side
by 4.9 m/s² : (0.112 m) / (4.9 m/s²) = time²
(0.112 / 4.9) sec² = time²
Square root
each side: time = √(0.112/4.9 sec²)
= √ 0.5488 sec²
= 0.74 second (rounded)
Answer:
-The speed of sound at 33°C is 362.8 m/s.
-The wavelength at a frequency at 5 kHz is 0.07256 m .
Explanation:
let v = 343 m/s be the speed of sound.
let T be the temperature.
then the speed of sound V, at 33°C is given by:
V = v + 0.6×T
= 343 + 0.6×33
= 362.8 m/s
Therefore, the speed of sound at 33°C is 362.8 m/s.
the wavelength at a frequency of f = 5kHz = 5000 Hz is given by:
λ = V/f
= (362.8)/(5000)
= 0.07256 m
Therefore, the wavelength at a frequency at 5 kHz is 0.07256 m .