An electron is negatively charged.
Complete Question
An oil tanker has collided with a smaller vessel, resulting in an oil spill in a large, calm-water bay of the ocean. You are investigating the environmental effects of the accident and need to know the area of the spill. The tanker captain informs you that 18000 liters of oil have escaped and that the oil has an index of refraction of n = 1.1. The index of refraction of the ocean water is 1.33. From the deck of your ship you note that in the sunlight the oil slick appears to be blue. A spectroscope confirms that the dominant wavelength from the surface of the spill is 485 nm. Assuming a uniform thickness, what is the largest total area oil slick
Answer:
The largest total area of the oil slick 
Explanation:
From the question we are told that
The volume of oil the escaped is 
The refractive index of oil is 
The refractive index of water is 
The wavelength of the light is 
Generally the thickness of the oil for condition of constructive interference between the oil and the water is mathematically represented as

Where is the order of interference of the light and it value ranges from 1, 2, 3,...n
It is usually take as 1 unless stated otherwise by the question
substituting value
The are can be mathematically evaluated as

Substituting values


Answer:3.56 nanosecond
In this case, you are asked the time and given the light distance(3.5ft)
To answer this question you would need to know the velocity of light. Speed of light is <span>299792458m/s. Then the calculation would be:
time= distance/speed
time= 3.5 ft / (</span>299792458m/s) x 0.3048 meter/ 1 ft= 3.56

second or 3.56 nanosecond
Answer: 49.5 m
Explanation:
The speed of sound
is given by a relation between the distance
and the time
:
(1)
Where:
is the speed of sound in air (taking into account this value may vary according to the medium the sound wave travels)
since we are told th hunter was initially 412.5 meters from the cliff and then moves a distance
towards the cliff
Since the time given as data (2.2 s) is the time it takes to the sound wave to travel from the hunter's gun and then go back to the position where the hunter is after being reflected by the cliff
Having this information clarified, let's isolate
and then find
:
(2)
(3)
Finding
:
This is the distance at which the hunter is from the cliff.
A spring that obeys Hooke's law has a spring force constant of 272 N/m. This spring is then stretched by 28.6 cm