1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
1 year ago
6

Project: weather forcasting

Physics
1 answer:
Paul [167]1 year ago
7 0

B that is the correct answer

You might be interested in
Which list of properties of alternation current is the most likely reason it was chosen over direct current to provide electrici
Paraphin [41]

Answer:

- Direct current is a current in which electrons flow in one direction only

- Alternating current is a current in which the direction of the electron flow reverses periodically - so, half a cycle forward, half a cycle backward

There are several advantages of using alternating currents for the transmission of electricity across a country, over large distances. The main advantages are:

- The voltage of alternating currents can be easily increased/decreased by using transformers. For instance, a transformer is used at the beginning of the transmission line to increase the voltage (electricity is transmitted at high voltage in order to reduce dissipated power), and then another transformer is used before the electricity enters the houses, in order to decrease the voltage. Transformers only work with alternating currents.

- It is easy to interrupt the flow of an alternating current, because its value naturally becomes zero every half a cycle, so this is useful in case the current must be interrupted.

8 0
3 years ago
An astronaut goes out for a space walk. Her mass (including space suit, oxygen tank, etc.) is 100 kg. Suddenly, disaster strikes
Marina CMI [18]

Answer:

<u>Part A:</u>

Unknown variables:

velocity of the astronaut after throwing the tank.

maximum distance the astronaut can be away from the spacecraft to make it back before she runs out of oxygen.

Known variables:

velocity and mass of the tank.

mass of the astronaut after and before throwing the tank.

maximum time it can take the astronaut to return to the spacecraft.

<u>Part B: </u>

To obtain the velocity of the astronaut we use this equation:

-(momentum of the oxygen tank) = momentum of the astronaut

-mt · vt = ma · vt

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

To obtain the maximum distance the astronaut can be away from the spacecraft we use this equation:

x = x0 + v · t

Where:

x = position of the astronaut at time t.

x0 = initial position.

v = velocity.

t = time.

<u>Part C:</u>

The maximum distance the astronaut can be away from the spacecraft is 162 m.

Explanation:

Hi there!

Due to conservation of momentum, the momentum of the oxygen tank when it is thrown away must be equal to the momentum of the astronaut but in opposite direction. In other words, the momentum of the system astronaut-oxygen tank is the same before and after throwing the tank.

The momentum of the system before throwing the tank is zero because the astronaut is at rest:

Initial momentum = m · v

Where m is the mass of the astronaut plus the equipment (100 kg) and v is its velocity (0 m/s).

Then:

initial momentum = 0

After throwing the tank, the momentum of the system is the sum of the momentums of the astronaut plus the momentum of the tank.

final momentum = mt · vt + ma · va

Where:

mt = mass of the tank

vt = velocity of the tank

ma = mass of the astronaut

va = velocity of the astronaut

Since the initial momentum is equal to final momentum:

initial momentum = final momentum

0 = mt · vt + ma · va

- mt · vt = ma · va

Now, we have proved that the momentum of the tank must be equal to the momentum of the astronaut but in opposite direction.

Solving that equation for the velocity of the astronaut (va):

- (mt · vt)/ma = va

mt = 15 kg

vt = 10 m/s

ma = 100 kg - 15 kg = 85 kg

-(15 kg · 10 m/s)/ 85 kg = -1.8 m/s

The velocity of the astronaut is 1.8 m/s in direction to the spacecraft.

Let´s place the origin of the frame of reference at the spacecraft. The equation of position for an object moving in a straight line at constant velocity is the following:

x = x0 + v · t

where:

x = position of the object at time t.

x0 = initial position.

v = velocity.

t = time.

Initially, the astronaut is at a distance x away from the spacecraft so that

the initial position of the astronaut, x0, is equal to x.

Since the origin of the frame of reference is located at the spacecraft, the position of the spacecraft will be 0 m.

The velocity of the astronaut is directed towards the spacecraft (the origin of the frame of reference), then, v = -1.8 m/s

The maximum time it can take the astronaut to reach the position of the spacecraft is 1.5 min = 90 s.

Then:

x = x0 + v · t

0 m = x - 1.8 m/s · 90 s

Solving for x:

1.8 m/s · 90 s = x

x = 162 m

The maximum distance the astronaut can be away from the spacecraft is 162 m.

6 0
3 years ago
How can voltage be induced in a wire with the help of a magnet?
babunello [35]
If you move a magnet through a loop of wire, induction will happen. The more loops you make, the stronger the effect becomes.
3 0
3 years ago
I really need help with this to be able to pass this last semester this is about (Circular Motion ) on physics
ankoles [38]
Question 1
To find centripetal acceleration, use the formula : centripetal acceleration = v^2/r
so answer would be (3.71)^2/42.85=0.32 (2d.p.)
Question 2
Force =ma
a= (9.98)^2/31.77=3.1350
Force= 3.1350 * 56.63 = 177.54 (2 d.p.)
4 0
3 years ago
Read 2 more answers
An electric charge q of mass m in an oscillating electric field Eosinot experiences force q Eosinot. Suppose it starts from rest
Masja [62]

Answer:

speed of the charge electric is  v = - (Eo q/m) cos t

Explanation:

The electric charge has a very small mass so it follows the oscillations of the electric field. We force ourselves on the load,

          F = q Eo sint

a) To find the velocity of the particle, let's use Newton's second law to find the acceleration and of this by integration the velocity

        F = ma

        q Eo sint = ma

        a = Eo q / m sint

        a = dv / dt

        dv = adt

        ∫ dv = ∫ a dt

        v-vo = I (Eoq / m) sin  t dt

        v- vo = Eo q / m (-cos t)

We evaluate the integral from the initial point, as the particle starts from rest Vo = 0, for t = 0

        v = - (Eo q / m) cos t

b) Kinetic energy

       

         K = ½ m v2

          K = ½ m (Eoq / m)²2 (sint)²

         K = ¹/₂  Eo² q² / m sin² t

c) The average kinetic energy over a period

          K = ½ m v2

         <v2> = (Eoq / m) 2 <cos2 t>

The average of cos2 t = ½, substitute and calculate

          K = ½ m (Eoq / m)²  ½

          K = ¼ Eo² q² / m

7 0
3 years ago
Other questions:
  • As matter changes state from gas to liquid, which of these statements is true?
    6·1 answer
  • H-2 + H-3 → He-4 +
    15·2 answers
  • How resistance, current, and voltage behave in a series circuit.?
    5·1 answer
  • Please helpp!!!!!!!!!!!!!!!!!!!!!!
    14·1 answer
  • Match the type of boundary with it's characteristic
    13·2 answers
  • Scientific ideas about the solar system have changed over time. Which of them
    13·1 answer
  • In which direction does the frictional force act on the cube? A) upwards B) downwards C)in all the directions D) side to side
    5·1 answer
  • Please help me link - https://syx48hz22ou.typeform.com/to/TIIxnYFr<br> tell me when your finished
    14·1 answer
  • A force of 4 kg weight acts on a body of mass 9.8 kg calculate the acceleration
    11·2 answers
  • Choose the correct definitions of speed, velocity, and acceleration. Check all that apply. Acceleration tells us in which direct
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!