The difference between a substance and a mixture is that a substance is one of a kind, a material of the same composition throughout, on the contrary, a mixture is one or more different substances brought together and mixed together without changing the nature of each single substance.
One way to test it is to take two substances like sand and table salt. They should each be in granular form and in adequate amount to mix. Neither substance has changed after mixing the two. Even though it may not be easy or convenient to accomplish, each substance could be separated out from the mixture.
When it comes to two substances in lump form, it would not be a mixture when one lump is positioned next to the other lump because there are not enough pieces to combine.
However, there could be a mixture of three substances, like sand, table salt and graphite powder and there could be a mixture with four substances, etc., ad infinitum.
Mixtures are of solid substances in general. On the other hand, one starts referring to solutions when liquids are involved. Gases can be a mixture like for example, air is a mixture with nitrogen, oxygen, argon, etc.
Answer:
There is 17.1 kJ energy required
Explanation:
Step 1: Data given
Mass of ethanol = 322.0 grams
Initial temperature = -2.2 °C = 273.15 -2.2 = 270.95K
Final temperature = 19.6 °C = 273.15 + 19.6 = 292.75 K
Specific heat capacity = 2.44 J/g*K
Step 2: Calculate energy
Q = m*c*ΔT
⇒ m = the mass of ethanol= 322 grams
⇒ c = the specific heat capacity of ethanol = 2.44 J/g*K
⇒ ΔT = T2 - T1 = 292.75 - 270.95 = 21.8 K
Q = 322 * 2.44 * 21.8 = 17127.8 J = 17.1 kJ
There is 17.1 kJ energy required
Answer:

Explanation:
We know, 
where, R = 0.0821 L.atm/(mol.K), T is temperature in kelvin and
is difference in sum of stoichiometric coefficient of products and reactants
Here
and T = 311 K
So, ![K_{p}=(0.0111)\times [(0.0821L.atm.mol^{-1}.K^{-1})\times 311K]^{-1}=4.35\times 10^{-4}](https://tex.z-dn.net/?f=K_%7Bp%7D%3D%280.0111%29%5Ctimes%20%5B%280.0821L.atm.mol%5E%7B-1%7D.K%5E%7B-1%7D%29%5Ctimes%20311K%5D%5E%7B-1%7D%3D4.35%5Ctimes%2010%5E%7B-4%7D)
Hence value of equilibrium constant in terms of partial pressure
is 
Answer: Kinetic Energy of the atoms also increases.
Explanation: We are given that the temperature of the gas increases.
Relation between kinetic energy and temperature follows:

where, K = Average Kinetic energy
R = Gas constant
T = Temperature
= Avogadro's number
As seen from the relation above, the Kinetic energy of the gas is directly proportional to the temperature, hence as the temperature increases, kinetic energy of the atom also increases.
Answer:
46g of sodium acetate.
Explanation:
The data is: <em>Precipitation from a supersaturated sodium acetate solution. The solution on the left was formed by dissolving 156g of the salt in 100 mL of water at 100°C and then slowly cooling it to 20°C. Because the solubility of sodium acetate in water at 20°C is 46g per 100mL of water, the solution is supersaturated. Addition of a sodium acetate crystal causes the excess solute to crystallize from solution.</em>
The third solution is the result of the equilibrium in the solution at 20°C. As the maximum quantity that water can dissolve of sodium acetate at this temperature is 46g per 100mL and the solution has 100mL <em>there are 46g of sodium acetate in solution. </em>The other sodium acetate precipitate because of decreasing of temperature.
I hope it helps!