Answer:
Quartered
Explanation:
Because you're a liberal.
Answer:
Wavelength, 
Explanation:
It is given that,
Speed of radio waves is 
Frequency of radio waves is f = 101,700,000 Hz
We need to find the wavelength of WFNX’s radio waves. The relation between wavelength, frequency and speed of a wave is given by :

is wavelength

So, the wavelength of WFNX’s radio waves is 2.94 m.
Answer:
With the addition of the pipe we have a greater torque.
Explanation:
We need to complete the description of the problem, searchin in internet we have:
"Sometimes, even with a wrench, one cannot loosen a nut that is frozen tightly to a bolt. It is often possible to loosen the nut by slipping one end of a long pipe over the wrench handle and pushing at the other end of the pipe. With the aid of the pipe, does the applied force produce a smaller torque, a greater torque, or the same torque on the nut?"
With the addition of the pipe we have a greater torque, as it increases the distance or radius of torque.
We know that torque is defined, as the product of force by distance, in this way we have:
T = F * d
where:
T = torque [N*m]
F = force [N]
d = distance [m]
We can see in the above equation, that increasing the distance increases torque proportionally.
Answer:it experiences no force
Explanation:
a charge moving in a direction parallel to the magnetic field experience no force.since the angle e is 0,force would also be 0
Complete Question:
Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric force on sphere B due to sphere A is F . F. The magnitude of the electric force on sphere A due to sphere B must be:
A. 2F
B. F/4
C. F/2
D. F
E. 4F
Answer:
D.
Explanation:
If both spheres can be treated as point charges, they must obey the Coulomb's law, that can be written as follows (in magnitude):

As it can be seen, this force is proportional to the product of the charges, so it must be the same for both charges.
As this force obeys also the Newton's 3rd Law, we conclude that the magnitude of the electric force on sphere A due to sphere B, must be equal to the the magnitude of the force on the sphere B due to the sphere A, i.e., just F.