Answer:
<h3>The answer is 1.99 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 16.93 g
volume = final volume of water - initial volume of water
volume = 19.7 - 11.2 = 8.5 mL
We have

We have the final answer as
<h3>1.99 g/mL</h3>
Hope this helps you
Answer:
The given reaction is a combustion reaction of benzene,
C
6
H
6
. From its balanced chemical equation,
2
C
6
H
6
+
15
O
2
→
12
C
O
2
+
6
H
2
O
,
the mass of carbon dioxide
(
C
O
2
)
produced from 20 grams (g) of
C
6
H
6
is determined through the molar mass of the two compounds, given by,
M
M
C
O
2
=
44.01
g
/
m
o
l
M
M
C
6
H
6
=
78.11
g
/
m
o
l
and their mole ratio:
12
m
o
l
C
O
2
2
m
o
l
C
6
H
6
→
6
m
o
l
C
O
2
1
m
o
l
C
6
H
6
With this,
m
a
s
s
o
f
C
O
2
=
(
20
g
C
6
H
6
)
(
1
m
o
l
C
6
H
6
78.11
g
C
6
H
6
)
(
6
m
o
l
C
O
2
1
m
o
l
C
6
H
6
)
(
44.01
g
C
O
2
1
m
o
l
C
O
2
)
=
(
20
)
(
6
)
(
44.01
)
g
C
O
2
78.11
=
5281.2
g
C
O
2
78.11
m
a
s
s
o
f
C
O
2
=
67.6
g
C
O
2
Therefore, the mass in grams of
C
O
2
formed from 20 grams of
C
6
H
6
is
67.6
g
C
O
2
.
it is a problem of app
Answer:
C. increase to 7.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, the molar relationship is 1 to 1, therefore, the moles are:

Thus, since the entire hydrogen ions are neutralized, the pH C. increase to 7.
Best regards.
Answer:
True
Explanation:
A mole is defined as 6.02214076 × 1023 of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
The correct option is D.
The hydrogen atoms that are attached to the nitrogen atom in the ammonia molecule are capable of forming hydrogen bond. The hydrogen bond that exist in the ammonia molecule is the reason why it shows higher boiling point compare to the other hydrides. Hydrogen bond occur in ammonia because ammonia is one of the most electronegative elements.