Answer:
Explanation:
If you insist on filling in the first blank you can put a one.
Answer:
See explanation
Explanation:
In the Rutherford experiment, alpha particles were directed at the same spot on a thin gold foil.
As the alpha particles hit the foil, most of the alpha particles went through the foil. In Rutherford's interpretation, most of the particles went through because the atom consisted largely of empty space.
However, some of the alpha particles were deflected through large angles, in Rutherford's interpretation, the deflected alpha particles had hit the dense positive core of the atom which he called the nucleus.
This accounted for their scattering through large angles throughout the foil in all directions.
Professor of Physics Carlo Rubbia
E = HF, where H is Planck's constant, 6.63 x 10 - 34 j.s
Answer:
Explanation:
Step 1: Data given
The equilibrium constant, Kc, for the following reaction is 4.76 * 10^-4 at 431 K
The equilibrium concentration of Cl2(g) is 0.233 M
Step 2: The balanced equation
PCl5(g) ⇄ PCl3(g) + Cl2(g)
Step 3: The initial concentration
[PCl5]= Y M
[PCl] = 0M
[Cl2] = 0M
Step 4: Calculate the concentration at equilibrium
[PCl5] = Y + X M = Y - 0.233 M
[PCl]= XM = 0.233 M
[Cl2]= XM = 0.233 M
Step 5: Define Kc
Kc = [Cl2]* [PCl3] / [PCl5]
4.76 * 10^-4 = 0.233² / (Y -0.233)
0.000476 = 0.05429 / (Y - 0.233)
Y - 0.233 = 0.05429 / 0.000476
Y - 0.233 = 114.05 M
Y = 114.283 M = the initial concentration
The concentration of PCl5 at the equilibrium is 114.05 M