<u>Given:</u>
Initial concentration of potassium iodate (KIO3) M1 = 0.31 M
Initial volume of KIO3 (stock solution) V1 = 10 ml
Final volume of KIO3 V2 = 100 ml
<u>To determine:</u>
The final concentration of KIO3 i.e. M2
<u>Explanation:</u>
Use the relation-
M1V1 = M2V2
M2 = M1V1/V2 = 0.31 M * 10 ml/100 ml = 0.031 M
Ans: The concentration of KIO3 after dilution is 0.031 M
M = 2 . 8 . 2
Valence Electron of M = 2
M ==> M⁺² + 2 e⁻
a. M⁺² + OH⁻ ==> M(OH)₂
b. M⁺² + PO₄⁻³ ==> M₃(PO₄)₂
Answer:
mL of NaOH required =29.9mL
Explanation:
Let us calculate the moles of vitamin C in the tablet:
The molar mass of Vitamin C is 176.14 g/mole

Thus we need same number of moles of NaOH to reach the equivalence point.
For NaOH solution:



potassium belongs to group IA of the periodic table.
Answer:
B and C
Explanation:
I think the answer correct is C because you never know in what temperature the block of ice is going to melt but if it says select all that apply its possible that B might be useful.