Explanation:
see, torque=force × perpendicular distance
...that perpendicular distance is between axis of rotation and the point where force acts... so in above's case perpendicular distance is zero... so the torque is zero!
Answer:
9 and 3 N
Explanation:
Forces in the same direction sum up to produce the resultant force;
One force subtract the other will give the resultant force when they are in opposite directions;
Lets say one direction is forwards and the opposite backwards;
We have one force, let's say force A, in the forwards direction and another force, force B, acting in the same (forwards) or opposite (backwards) direction;
If B is acting in the same direction, then the resultant force (in this case) will be as follows:
A + B = 12
If B is acting in the opposite direction, then the resultant force will be as follows:
A - B = 6
Summing the two equations will allow us to solve for A:
A + B + (A - B) = 12 + 6
2A = 18
A = 9
Substitute this into either of the above equations and we can solve for B:
(9) - B = 6
B = 9 - 6
B = 3
Answer:
Explanation:
1. Mechanical waves require material medium for their propagation while electromagnetic waves do not require material medium for their propagation.
2. Mechanical waves can either be transverse or longitudinal while electromagnetic waves are transverse.(Transverse waves are waves in which the vibration of the particules of the medium is perpendicular to the direction of the motion of wave. E.g water waves, waves of a plucked string and all electromagnetic waves RIVUXG . Longitudinal waves are waves whose vibration are parallel to the direction of the motion of the medium e.g waves in strings, sound waves.e.t.c)
Answer:
B) collision is inelastic because they stick together after collision and share a common final velocity Vf
C) M1V1 + M2V2 = (M1 + M2)Vf
D) Vf = 6.33m/s
E) force = 3040N
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
(I). The initial rotation rate is 4.29 rad/s.
(II). The revolutions is 3932.
Explanation:
Given that,
Time = 1.6 h
Angular velocity = 41 rpm
(I). We need to calculate the initial rotation rate in rad/s



(II). We need to calculate the revolutions
Using formula of revolutions





Hence, (I). The initial rotation rate is 4.293 rad/s.
(II). The revolutions is 3932.