Answer:
I'm pretty sure its 3m/s^2 for the acceleration but I don't know the force part sorry .
Explanation:
15m/s - 0m/s divided by 5 s = 3m/s
I'm no expert or anything so I could be wrong but this is the best I can give you. Sorry
Answer:
14.7 m/s.
Explanation:
From the question given above, the following data were obtained:
Time (t) = 1.5 s
Acceleration due to gravity (g) = 9.8 m/s².
Height = 11.025 m
Final velocity (v) = 0 m/s
Initial velocity (u) =?
We, can obtain the initial velocity of the penny as follow:
H = ½(v + u) t
11.025 = ½ (0 + u) × 1.5
11.025 = ½ × u × 1.5
11.025 = u × 0.75
Divide both side by 0.75
u = 11.025/0.75
u = 14.7 m/s
Therefore, the penny was travelling at 14.7 m/s before hitting the ground.
It does not violate the law of conservation of energy. The oscillation stops when the energy is lost and the energy is lost because it becomes heat that is created by the air resistance and many other forces found in the surrounding of the oscillating spring.