Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
The answer is B
second law
Answer:
![\triangle V = 0.02484m^3](https://tex.z-dn.net/?f=%5Ctriangle%20V%20%3D%200.02484m%5E3)
Explanation:
Given
--- initial volume
--- initial temperature
--- final temperature
--- coefficient of thermal expansion:
Required
The change in volume
To do this, we make use of cubic expansivity formula
![\triangle V = \gamma * V_2 * (T_2 - T_1)](https://tex.z-dn.net/?f=%5Ctriangle%20V%20%3D%20%5Cgamma%20%2A%20V_2%20%2A%20%28T_2%20-%20T_1%29)
So, we have:
![\triangle V = 207 * 10^{-6} * 3.00 * (60.0 - 20.0)](https://tex.z-dn.net/?f=%5Ctriangle%20V%20%3D%20207%20%2A%2010%5E%7B-6%7D%20%2A%203.00%20%2A%20%2860.0%20-%2020.0%29)
![\triangle V = 207 * 10^{-6} * 3.00 * 40.0](https://tex.z-dn.net/?f=%5Ctriangle%20V%20%3D%20207%20%2A%2010%5E%7B-6%7D%20%2A%203.00%20%2A%2040.0)
![\triangle V = 0.02484m^3](https://tex.z-dn.net/?f=%5Ctriangle%20V%20%3D%200.02484m%5E3)
The volume will expand by ![0.02484m^3](https://tex.z-dn.net/?f=0.02484m%5E3)
Answer:
<u>954.4m/s</u>
Explanation:
For a free falling object,it has constant acceleration and a changing velocity.
By using the velocity-time formula, the velocity can be obtained.
The height the rock travelled is the distance.
From,
Velocity (v) = Distance (d) / Time(t)
v = 3245m/3.4s
v = <u>954.4m/s</u>
That js the answer I got. Hope it's right.