Water is molecule formed by the covalent bonding of two atoms of hydrogen with one atom of oxygen. The chemical and physical properties of water are different from each of it's constituent elements Oxygen and Hydrogen. The properties of a drop of water will depend on the simplest unit of water, which is the water molecule . Therefore, the smallest unit of the water drop that retains all the physical and chemical properties exhibited by a sample of water is the molecule.
Answer:
0.038 g of reactant
Explanation:
Data given:
Heat release for each gram of reactant consumption = 36.2 kJ/g
mass of reactant that release 1360 J of heat = ?
Solution:
As 36.2 kJ of heat release per gram of reactant consumption so first we will convert KJ to J
As we know
1 KJ = 1000 J
So
36.2 kJ = 36.2 x 1000 = 36200 J
So it means that in chemical reaction 36200 J of heat release for each gram of reactant consumed so how much mass of reactant will be consumed if 1360 J heat will release
Apply unity formula
36200 J of heat release ≅ 1 gram of reactant
1360 J of heat release ≅ X gram of reactant
Do cross multiplication
X gram of reactant = 1 g x 1360 J / 36200 J
X gram of reactant = 0.038 g
So 0.038 g of reactant will produce 1360 J of heat.
The total energy required for this conversion is equivalent to the sum of the energies that are used. There are three steps:
1) Heating of liquid acetone
This used 628 J
2) Evaporation of acetone
This used 15.6 kJ or 15,600 J
3) Heating of acetone vapors
This used 712 J
Adding these quantities,
Total energy = 628 + 15,600 + 712
The total energy required was <span>16940 Joules of 16.94 kJ</span>