Answer:

Explanation:
Reynolds number:
Reynolds number describe the type of flow.If Reynolds number is too high then flow is called turbulent flow and Reynolds is low then flow is called laminar flow .
Reynolds number is a dimensionless number.Reynolds number given is the ratio of inertia force to the viscous force.

For plate can be given as

Where ρ is the density of fluid , v is the average velocity of fluid and μ is the dynamic viscosity of fluid.
Flow on plate is a external flow .The values of Reynolds number for different flow given as


Answer:
The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.
Explanation:
160 - 120 = 40
120 = 100
40 = X
40 x 100 / 120 = X
4000 / 120 = X
33.333 = X
120 = 100
160 = X
160 x 100 /120 = X
16000 / 120 = X
133.333 = X
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.