They do in fact heat up while receiving energy.
Answer:
thickness1=1.4m
thickness2=2.2m
convection coefficient=0.33W/m^2K
Explanation:
you must use this equation to calculate the thickness:
L=K(T2-T1)/Q
L=thickness
T=temperature
Q=heat
L1=0.04*(0--350)/10=1.4m
L2=0.1(220-0)/10=2.2m
Then use this equation to calculate the convective coefficient
H=Q/(T2-T1)
H=10/(250-220)=0.33W/m^2K
Answer:
I=0.3636
Explanation:
See the attached picture for explanation.
Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength =
.............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa