Since
potassium and phosphate is what we are to find for and they are both found in
the potassium phosphate solution, therefore we solve for this one first on the
basis of the phosphate.
The formula
for finding the volume given the concentration and number of moles is:
Volume =
number of moles / concentration in Molarity
Volume
potassium phosphate required = 30 mmol phosphate / (3 mmol / mL)
<u>Volume
potassium phosphate required = 10 mL</u>
This would
also contain potassium in amounts of:
Amount of
potassium in potassium phosphate = 10 mL (4.4 meg / mL)
Amount of
potassium in potassium phosphate = 44 meg
Therefore
the potassium chloride required is:
Volume of
potassium chloride = (80 meg – 44 meg) / (2 meg / mL)
<span><u>Volume of
potassium chloride = 72 mL</u></span>
Answer:
Electronegativity, symbol χ, is a chemical property that describes the tendency of an atom to attract a shared pair of electrons (or electron density) towards itself. An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus.
Explanation:
Magnesium and oxygen reacting to form magnesium oxide is a synthesis reaction. This reaction occurs when many reactants proceeds to reaction forming a single product. Synthesis reactions release energy in the form of light or heat, therefore they are exothermic reaction.
Answer:
.
Explanation:
Consider the oxidation state on each of the element:
Left-hand side:
- O: -2 (as in most compounds);
- Cr:
; - Fe: +2 (from the charge of the ion);
Right-hand side:
Change in oxidation state:
- Each Cr atom: decreases by 3 (reduction).
- Each Fe atom: increases by 1 (oxidation).
Changes in oxidation states shall balance each other in redox reactions. Thus, for each Cr atom on the left-hand side, there need to be three Fe atoms.
Assume that the coefficient of the most complex species
is 1. There will be two Cr atoms and hence six Fe atoms on the left-hand side. Additionally, there are going to be seven O atoms.
Atoms are conserved in chemical reactions. As a result, the right-hand side of this equation will contain
- two Cr atoms,
- six Fe atoms, and
- seven O atoms.
O atoms seldom appear among the products in acidic environments; they rapidly combine with
ions to produce water
. Seven O atoms will make seven water molecules. That's fourteen H atoms and hence fourteen
ions on the product side of this equation. Hence the balanced equation. Double check to ensure that the charges on the ions also balance.
.
Answer:
<em>forms when a neutron changes into a proton and a high-energy electron .</em>
<em>hope this helps</em><em> </em><em><</em><em>3</em>