Answer:
option E.
Explanation:
When the ball is at the highest point the velocity of the ball is zero.
At the height point the kinetic energy is zero and potential energy is maximum.
At maximum point momentum cannot be maximum because velocity is zero.
Acceleration on the ball is equal to acceleration due to gravity on the ball.
Hence, the correct answer is option E.
For this case, in the next item we have gravitational potential energy:
An apple in a tree.
Suppose we define our reference system at the floor level.
Suppose the apple is at a height h from the floor and has mass m.
The gravitational potential energy of the apple is given by:
U = mgh
Where,
m: apple mass
h: height of the apple with respect to the floor
g: acceleration due to gravity
Answer:
C) an apple on a tree
Answer: B, they can land themselves now
Explanation:
The given statement"If the pressure of a gas sample is quadrupled and the absolute temperature is doubled" is false.
Answer: Option B
<u>Explanation:</u>
As we know the direct relationship between Pressure and Temperature by the Gay-Lussac’s Law,

From this, we get,


So, according to given statement, we have 
Then from the above expression, we can find out the value of
when pressure increased by 4 times of initial pressure as,

Hence, we get,

Hence, from the above expression we can say that as we increase the pressure four times, the temperature does not get doubled. So, the given statement in the question is false.
Answer:
X = 2146.05 m
Explanation:
We need to understand first what is the value we need to calculate here. In this case, we want to know how far from the starting point the package should be released. This is the distance.
We also know that the plane is flying a certain height with an specific speed. And the distance we need to calculate is the distance in X with the following expression:
X = Vt (1)
However we do not know the time that this distance is covered. This time can be determined because we know the height of the plain. This time is referred to the time of flight. And the time of flight can be calculated with the following expression:
t = √2h/g (2)
Where g is gravity acceleration which is 9.8 m/s². Replacing the data into the expression we have:
t = √(2*2500)/9.8
t = 22.59 s
Now replacing into (1) we have:
X = 95 * 22.59
<h2>
X = 2146.05 m</h2>
This is the distance where the package should be released.
Hope this helps